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Solar Methane Reforming Demonstrations

sSTARS Steam-Methane Reforming (2010-2020)
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Solar Methane Reforming Demonstrations
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Microchannel Reactors and Heat Exchangers
STARS Over S50M in Development Projects at the DOE Pacific Northwest
National Laboratory (PNNL) over 25+ Years

Conventional Process 21* Century Highly Efficient Microchannel Steam
Technology (1920s) Micro- and Meso- Channel Process Technology Reformer plus Heat Exchanger

(mimics nature) Network (2000)



General Principles: Concentrators, Receivers,
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Law First;

* Endothermic unit
chemical operations
require exergy

» Exergetically
efficiency
components and
systems accomplish
the highest energy
efficiencies



General Principles:

STARS  Concentrators, Receivers, Reactors...
Also Separators, Heat Exchangers

Match Solar Concentrators
to the Unit Operation:

« Many unit chemical
operations do not require
high temperature heat

* High concentration ratios
generate greater exergy
content, but some solar
concentrators produce
thermal exergy at higher
costs than others




Focus Question: Can Solar Thermochemical
STAR - Systems Help Achieve a Carbon-Neutral Future?

* Replace fossil energy
with solar thermal
energy

« Across a large range of
temperature demands

e Reactors

« Separators (e.g.,
sorption, distillation...)

 Steam Generators and
other Heat Exchangers

Cooling Muid (Q¢)
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Focus Question: Can Solar Thermochemical
STAR - Systems Help Achieve a Carbon-Neutral Future?

Pacific NW
National

Laboratory/
NASA

Thermally- Enhanced Pressure -Swing Adsorption

Solar Thermochemical Capture of Atmospheric CO, |



Summary and Conclusions 1

STARS Key Questions

Value Proposition

* Who has the “pain” and how are you alleviating it?
 What is the cost target?

Architecture

e Distributed or central? Economies of scale or economies of hardware mass
production?

« Reactions, separations or other? What temperature heat is required?

« Concentrator options, including availablility of value chain? What about solar-
electric hybrid systems? Do they enhance economic feasibility?

* Energy storage? (Cheap or expensive?)
 Efficiency: What are the sources and magnitudes of exergy destruction?
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Summary and Conclusions 2

STARS Key Questions

Carbon Management Value Proposition

« How can concentrated solar thermochemical operations reduce the demand for
fossil energy?

« Can we use solar thermochemical systems to go carbon-neutral?

 How about carbon-negative?

CCS: Can we use solar thermal to accomplish affordable
Carbon Capture and Sequestration? Yes

CCU: How about Carbon Capture and Use? Yes

Shovel-Ready
Solar Thermochemical Projects
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